
An approach to Aspect Modelling with UML 2.0

Eduardo Barra
ebarra@ie.inf.uc3m.es

Gonzalo Génova
ggenova@inf.uc3m.es

Juan Llorens
llorens@ie.inf.uc3m.es

Computer Science Department
University Carlos III of Madrid
Avda. de la Universidad, 30

28911 Leganés–Madrid. Spain

Abstract
The Aspect-Oriented Programming (AOP) has matured to
become in Aspect-Oriented Software Development (AOSD),
which its main objective is to promote the advance separation of
concerns throughout the software development life cycle.

As the modelling language UML is the most used standard to
specify and document in a precise way any OO system; so it
seems natural to extend it to AOSD. UML 2.0, although it is not
taken effect yet, include new features that could give support to an
AOSD modelling.

In this context, this work presents an approach to an AOSD
working method, using the new elements added in UML 2.0 with
respect to the previous version, as well as the ones that existed
before, in order to think about the modelling of a problem in
terms of main concepts and properties that typify the Aspect-
Oriented style.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – Aspect-Oriented
Modelling Methods.

General Terms
Performance, Design, Standardization, Languages, Theory.

Keywords
Aspect-Oriented Programming, Aspect-Oriented Software
Development, Advance Separation of Concerns, Aspects
Modelling, UML 2.0, Aspects Conceptual Model.

1. INTRODUCTION
The Software Engineering (SE) is an area included in the
Computer Science that offers methods and techniques to develop
and maintain quality software. In the first developments of
programming languages there was a code in which didn’t exist
separation of concerns, data and functionality. From the
extensibility and reuse objectives, two of the most important
quality elements, it appeared the need of having architectures of
flexible systems, made with autonomous software components.

In this context, the increase of the software decomposition degree
turned into one of the main aims pursued by the SE world,
obtaining big advances through paradigms as procedural,
structural, functional, logical and abstract data types
programming. Each one of these steps in the programming

technology has introduced a bigger modularity level to the source
code. Currently, the predominant programming paradigm is
Object Oriented Programming (OOP) [1] which has been one
of the most important advances in the last years to build complex
systems using the decomposition principle, by means of
encapsulation and abstraction through a unity that captures both
functionality and behaviour and intern structure. This entity is
named class.

In the software system development, besides the basic
functionality, there are gathered another concerns as
synchronization, distribution, logging, error handling, security
management, etc. If each one of these concerns were processed
independently from the rest of the system, the adaptability,
extensibility and reusability of the system would be increased,
obtaining in this way quality software. To get this it is necessary
that each one of these concerns could be modulated inside the
system. This fact assumes not just the code division into concerns,
but also the specification of an interface that defines the
interaction between both concerns. To achieve this goal
researches have given a new step in SE suggesting a new way of
system decomposition, the Aspect-Oriented Programming
(AOP), that appears as a new paradigm introducing Aspects as
modularity mechanism [2]. The concepts that have been
introduced by Kiczales and his research group, Aspect, Join Point,
Crosscutting concerns and Weaving, constitute the heart of AOP.

The evolution of the Aspect-Oriented new paradigm has
progressed from programming towards the analysis and the
design. The Aspect-Oriented Software Development (AOSD) [3]
emerges naturally to promote the goal of the advance division of
concerns from the implementation level towards other software
development process phases, including the specification, analysis
and design requirements.
The Aspects-Oriented technology premise is the division of
crosscutting concerns, where certain design requirements tend to
cross the central functional entities group. However, some
research groups have worked to introduce the use of linguistic
divider mechanisms to modulate and compose crosscutting
concerns, being summed up in different approaches: Adaptive
Programming-AP, Composition Filters-CF, Subject-Oriented
Programming-SOP and Multi-Dimensional Separation of
Concerns –MDSoC. The AOP and these methods belong to a
bigger research field known as Advanced Separation of
Concerns-ASoC [4].
The methods related with ASoC propose different and assorted
groups of abstracts and composition mechanisms, with a

 2

terminology, properties, and language construction of its own.
Recently, the AOP has been considered as a possible convergence
of these independents paths of ASoC research, but the definition
of a unified and conceptual structure for the AOP that can be used
also through other approaches is still incomplete. The adoption of
a unified conceptual structure for the AOP is an important step to
provide support to AOSD.
In the following Section there is a vision about why is necessary
the Aspects modelling with a specific modelling language, besides
an introduction to UML. In Section 3 is presented a conceptual
aspect model, still informal, to extract general concepts and
properties of AO. In Section 4 there are some concepts inside
UML that contains aspectual features. In Section 5 there is an
approach to aspectual modelling. The last Section is about
conclusions and future works.

2. MODELLING IN AOSD
Once the initial decomposition of the problem domain identifies
the software entities and the aspectual properties that cross these
entities, we would like to be able to express this initial
decomposition and carry it to the next phase in the life cycle. In
order to make more effective this refinement process, the initial
semantics must be kept.
The AOSD modelling benefits have yet been studied by
researches [5], proving that when aspects are identified in an early
phase of a system development life cycle, the design components
are more reusable, and it becomes possible the automatic
generation of the code for Aspects-Oriented systems with higher
levels of concerns division in the code generated. In the same way
[6], is important that the capture of aspects in the design phase
speeds up the AO development process, which helps to
understand and document aspects, as well as capture aspects in
this design phase makes possible the round trip in the AO systems
development, helping to keep the consistency among
requirements, design and implementation.
To obtain these benefits is necessary a modelling language that
supports completely AOSD, with an essential requirement, being
able to express both the “Central” entities and the “Aspects”
entities with their relations. This should be generalized to any
dimensions number to support the multi-dimensional concerns
division.
The UML modelling language is the most used standard to specify
and document in a precise way any OO system; hence, it seems
reasonable to extend it also to AOSD1.

2.1 UML 2.0
Among the modelling languages defined by OMG, the most
known and used is with no doubt UML – Unified Modelling
Language [7]. UML is a graphic language to specify, visualize,
build, and document the software systems artefacts. Moreover,
provides a standard way to write the maps of a system, covering
both conceptual elements, like business process and system
functions, and the concrete aspects, like the classes written in a

1 The AOP is a kind of development that supports the objects-

oriented decomposition; although, it can’t be considered just as
an OOP extension, because it supports the procedural and
functional decomposition too.

specific programming language, database schemas and software
components.
UML is a standard modelling language subscribed by the OMG in
1997 as UML 1.1, evolving till the 1.5 version, and nowadays
there is a new UML 2.0 version waiting to be approved. While the
UML 1.5 main goal is the response to the classic needs of
Software Industry, the UML 2.0 version is a bigger evolution in
visual modelling, where the new improvements allow describe
many of the new elements found in the software technology of
today.
The new general features in UML 2.0 in the support of the
software architecture modelling and in the modelling based in
components imply the use of a new semantics. This document will
focus just on the new elements of the UML 2.0 version, which are
important to explain the approach to the Aspects-Oriented
Modelling in UML.
UML 2.0 [8] includes new features and elements that could give
support to the AOSD modelling. To detail a working framework it
would help to capture the whole wanted terminology and supply
“native” support to AOSD in UML.

3. CONCEPTUAL MODEL OF ASPECTS
To understand the UML 2.0 relationship with the Aspects-
Oriented paradigm, it is necessary to acquire a Conceptual Model
of Aspects (CMA). This paper presents an informal CMA
marking the basic concepts and properties to build an AO system.
Once understood these ideas, it will be able to obtain an approach
about the relationship between the CMA and the conceptual
elements of UML 2.0.

3.1 Basic-Module concept
The Basic-Module concept represents a conceptual working
framework used to think about a problem and decompose it in
terms of a certain kind of entity. A Basic-Module element can be
supported for one or more languages.
In the conceptual working framework for the Objects-Oriented
paradigm, it is used a Basic-Module element, where the main
concepts are objects and classes [9].

3.2 Join Point concept
The join point concept represents a conceptual working
framework used to describe the kinds of join points that interest
and the associated constraints for its use. The join point depends
to a large degree on the adopted Basic-Module concept.
We use the join point concept to denominate a location related to
a Basic-Module structure or execution that is related to and
possibly affected by an Aspect. From this dichotomy can be
extracted two properties:

• A static join point is a location in the structure of an entity.

• A dynamic join point is a location in the execution of a
program.

It is important to take into account that there are many locations
that can be used as join points, but in the practice, just one
subgroup is valued as useful [10]. The aspects-oriented languages
define the join points taken into account its language from the
Basic-Module.

 3

3.3 Crosscutting-Interfaces and Crosscutting-
Advices concepts
We use the Aspect term to denominate a first class entity, which
provides a modular representation for the crosscutting concerns.
The crosscutting concerns modulation involves the supply of an
abstraction mechanism composed by: the specification of an
interface that groups join points, as well as advices to be joint at
the specific join points. From this idea come off the following
concepts:

• Crosscutting-Interfaces Concept. They include one or more
specifications complete by a set of join points that are part of
an aspect.

• Crosscutting-Advices Concept. They are attributes and
operations that describe increases for the Basic-Modules
structure and behaviour. These increases can add new
structures and behaviours to one or more Basic-Modules,
clarify or even redefine existing behaviours. From this
concept come off another dichotomy:
o A structural Crosscutting-Advice serves to denominate

structural increases.
o A behavioural Crosscutting-Advice serves to denominate

behavioural increases.
In the same way, these Crosscutting-Advices can use static join
points or dynamic join points. Distinguishing one dichotomy
more:

o A static Crosscutting-Advice denominate an increase with
crosscutting features that use static join points.

o A dynamic Crosscutting-Advice denominate an increase
of crosscutting features that use dynamic join points.

3.4 Crosscutting Composition Properties
The aspects can crosscut one or more Basic-Modules, affecting
likely its structure and behaviour. From this observation we obtain
the Crosscutting Composition property to designate the
composition mechanism used to compose Aspects and Basic-
Modules, as well as the relationship between them. The following
properties can be distinguished when we consider the
Crosscutting Composition as a composition mechanism:

• Crosscutting-Composition Reversion. The term is used to
denominate the composition mechanism that relates Aspects
and Basic-Modules, where it is always from aspects to
entities.

• Crosscutting-Composition Dimensions. The Crosscutting
Composition can be applied homogeneously, providing
exactly the same group of increases to one or more Basic-
Modules, or heterogeneously, where the subgroups of
different increases are applied simultaneously to different
types of entities. We name the first one vertical Crosscutting
Composition, and the second one horizontal Crosscutting
Composition.

• Crosscutting Composition Cardinality. The Aspects can
crosscut one or more Basic-Modules simultaneously.
Moreover, the Basic-Modules can be crosscut for one or more
Aspects simultaneously.

• The Crosscutting Composition Nature. We call static
Crosscutting Composition to the crosscutting type that uses
static join points. We call dynamic Crosscutting
Composition to the crosscutting type that uses dynamic join
points.

3.5 Weaving Properties
Weaving is the composition process about Aspects and Basic-
Modules related by the crosscutting composition in the specified
join points. The term aspects weaver designates the tool that
composes Aspects and Basic-Modules.
The Weaving concept represents a conceptual working framework
used to describe the types of weaving mechanisms. A weaving
aspect can work on source code, byte code, or object code.
The weaving concept is part of our conceptual working
framework since can be useful to supply obvious features and/or
properties of the language. When we consider the Weaving
concept the following properties can be distinguished:

A weaving aspect can supply modification at execution time or
customer migration [11]. The modification at execution time or
customer migration is destructive, that is, the original component
code will not be available anymore after the weaving. The
customer migration means that both the original component and
the weaving versions are available.
The weaving can be static or dynamic:

o Static weaving is a weaving technology where the Basic-
Modules program and the Aspect program are joint in a
new sources version, only before or during the
compilation.

o Dynamic weaving [12] is a weaving technology that
allows the aspects to be woven and unwoven during the
execution.

4. UML ASPECTUAL CONCEPTS
This Section tries to supply the UML 2.0 building blocks with
aspectual features to support AOSD.

4.1 Port
In preceding researches it has been pointed that a key goal in
modelling an AO system resides in itemize the join point concept
[13]. The ACM described before give us a panorama about the
least features necessary in order to model the join points; a part of
these requirements could be solved with the Port sub-package
included in UML 2.0, described in the Chapter about composition
structures [8](p.167-171).
A Port is a structural feature of a classifier that specifies a distinct
interaction point between that classifier and its environment or
between the classifier and its internal parts. Ports are connected to
properties of the classifier by connectors through which requests
can be made to invoke the behavioural features of a classifier. A
Port may specify the services a classifier provides to its
environment as well as the services that a classifier expects of its
environment.
By default a port has public visibility. A port can’t be created or
deleted except as part of the owner-classifier creation or deletion.

 4

A port of a classifier is shown as a small square symbol. The
port’s name is allocated near to the square symbol (see Figure 1).

The interfaces associated to a port specify the nature of the
interactions that can take place in a port. The required interfaces
of a port characterize the requests than can be done from the
classifier towards its environment through this port. The provided
interfaces of a port characterize requests to the classifier that its
environment can make by means of this port.
The required and provided interfaces of a port specify everything
that is necessary for interactions through that interaction point. If
all interactions of a classifier with its environment are achieved
through ports, then the internals of the classifier are fully isolated
from the environment. This allows such a classifier to be used in
any context that satisfies the constraints specified by its ports.
A port has the ability to specify that any requests arriving at this
port are handled by the behaviour of the instance of the owning
classifier, rather than being forwarded to any contained instances,
if any.
If connectors are attached to both the port when used on a
property within the internal structure of a classifier and the port
on the container of an internal structure, the instance of the
owning classifier will forward any requests arriving at this port
along the link specified by those connectors. If there is a
connector attached to only one side of a port, any requests
arriving at this port will terminate at this port.
We observe that, besides the port, to understand the semantics of
the features of a classifier, the Connector is very related [8](p.
163-165).

4.2 Connector
The connector has been added in UML 2.0. The UML 1.4
association roles concept is assumed for the connectors.
Specifies a group of link that enables communication between two
or more instances. This link may be an instance of an association,
or it may represent the possibility of the instances being able to
communicate because their identities are known by virtue of being
passed in as parameters, held in variables, created during the
execution of a behaviour, or because the communicating instances
are the same instance. The link may be realized by something as
simple as a pointer or by something as complex as a network
connection. In contrast to associations, which specify links
between any instance of the associated classifiers, connectors
specify links between instances playing the connected parts only.
Each connector may be attached to two or more connectable
elements, each representing a set of instances. Each connector end
is distinct in the sense that it plays a distinct role in the
communication realized over a connector. The communications
realized over a connector may be constrained by various
constraints that apply to the attached connectable elements.

4.3 Interfaces
Understanding the ports its been noted that the interfaces
[8](p.112-117) are a complement in our attempt to represent join
points with UML 2.0 thanks to the features that they contain.
An interface proclaims a public features group and constraints that
constitute a coherent service offered by a classifier. The interfaces
provide a way to divide and characterize properties groups that
the classifier instances that perform it must own. An interface
don’t specify how it is going to be implemented, but merely what
needs to be supported by the performers instances, that is, such
instances must provide a public facade (attributes, operations,
externally observable behaviour) that shapes the interface.
An association between an interface and any other classifier
implies that a conforming association must exist between any
implementation of that interface and that other classifier. In
particular, an association between interfaces implies that a
conforming association must exist between implementations of
the interfaces.
The interface has been modified in UML 2.0 about its way of
being graphically represented, where it says that the
implementation dependency from a classifier to an interface is
shown representing the interface with a circle or ball, labelled
with the interface name, attached with a line to the classifier that
implements this interface. The use dependency from a classifier to
an interface is shown representing the interface with a half circle
or switch, labelled with the interface name, attached with a line to
the classifier that requires or uses its interface.

4.4 Association Class
The features of the UML 2.0 foregoing elements can provide
support for the representation of join points, since, as it can be
observed, such concept can’t be concentrated in just one element,
it must be modelled by the combination of different interrelated
building blocks.
The following step is trying to find the manner to represent the
ACM Crosscutting-Interface and Crosscutting-Advice concepts
proposed here. To support the necessary features we have come to
use the association classes as conclusion, without forgetting the
relationship that it keeps with the other elements used to
modelling the join points [8](p.117-120). In this new UML 2.0
version the association class doesn’t support any change, but it is
important to note the close relationship that keeps with the
connectors.
There is an association-class when an association has its own
features group; that is, features that are not related to any
connected classifiers but rather to the proper association. It will be
both an association, that connects a classifiers group, and a class,
and as such it will have features and will be included in others
associations. The semantics of an association class is a
combination made of semantics of an ordinary association and a
class. Both constructions are classifiers and therefore they have a
common properties group, like having features, having a name,
etc. Since these properties are an inheritance from the same
construction (Classifier), they won’t be duplicated. Moreover, an
association class has just one name, and it has the features group
that are defined for classes and for associations. The defined
constraints for class and association are applicable to the
association class too.

Figure 1. Port with required and provided interfaces

ClassifierClassifierClassifierClassifier

Join Point

ClassifierClassifierClassifierClassifierClassifierClassifierClassifierClassifier

Join Point

 5

4.5 Components
In this part we think it is important to comment the components
features, since the importance that the physical view has inside the
AO modelling in a complete system.
In the UML 2.0 specification the Components [8](p.133-150)
represent a modular part in a system that puts into a capsule their
contents and which manifestation is replaceable inside its
environment. A component is modelled during the whole life
cycle development and refined successively; moreover, it can be
expressed for one or more artefacts, and at the same time, these
artefacts can be displayed for its execution environment.
It is important to note that a component is a Classifier subtype,
therefore, it contains attributes and operations and it is able to
participate in associations and generalizations. A component can
form the abstraction for a classifier group that performs its
behaviour; besides, since the same class is an encapsulated
classifier subtype, a component can optionally have an internal
structure and own a ports group that formalize their interaction
points.

4.6 Internal structures
The components as well as all the classifiers have grown up due to
a one of the new more important features in UML 2.0, the
internal structures [8](p. 171-173).
The Internal structure sub-package provides mechanisms to
specify the interconnected elements structures that are created
inside an instance of a container classifier. This kind of structure
represents a decomposition of this classifier.

4.7 Property
At the internal structures it is said that the property represents an
instances group that are owned by a container classifier instance.
When a container classifier instance is created, an instances group
belonging to this properties can be created immediately or some
time later. These instances are classifier instances that are typified
by the property. A property specifies that an instances group can
exist; this instances group is a subgroup from the total instances
group specified by the typified classifier by the property.
One part declares that an instance of this classifier can contain an
instances group for composition. Everyone instances mentioned
are destroyed when the container classifier instance is destroyed.

5. STARTING THE ASPECTS
MODELLING WITH UML
Finally, in this Section we try to satisfy the ACM needs using
some new UML 2.0 concepts, achieving an approach to Aspects
modelling with UML; furthermore, some initial directives will be
propose in the AO systems modelling.
In preceding researches it is been detected the first great aspects
modelling directive [14]: the clear separation between Aspect and
Basic-Module. This dichotomy is adopted as the main conceptual
working framework that characterizes whatever is aspects-
oriented. Although, in order to develop the UML aspects
modelling, one more principle is established in this directive: An
aspect must be considered as an encapsulated module separated
from the main system, and separated too from the others aspects.

5.1 AO Architectural Modelling
Inside the aspects-oriented modelling we can see the importance
of defining precise abstractions using building blocks that allow
us to work thinking about the physical view of a system; this is
due to the different needs that carries module from the beginning
a system with a great Aspects-Oriented software quantity.
The logical modelling is done to visualize, specify and document
the decisions about the domain vocabulary and about how these
elements collaborate both structurally and from the behaviour
point of view, but all this has been thought just for the basic
functionality. To module aspects it seems clear to start from an
architectural modelling in order to respect always the principal
component in a system and control surely the aspectual
components. Due to these and other needs it is recommended to
use the directive about using the UML 2.0 Components diagram.

In Figure 2 a system is depicted where the basic functionality is
contained in a principal component named Basic Functionality;
at the same time, the diagram encapsulates the functionality of
each one of the Aspects in diverse components stereotyped as
<<aspect>>, denominating every component with the key name
that describes the type of modelling Aspect. The manner in which
the promised functionality will be provided will be mostly
described with the internal structures of each component.
The components diagram has represented too the ACM Weaver
concept properties described in this paper. The weaver
representation is shown with a component stereotyped as
<<weaver>>. An important consideration modelling is that the
join points will be managed in the weaver component, outside the
aspect components and the main component; so, this join points
don’t belong individually to any of the concerns but they are used
to indicate the crosscutting relationships between an aspect and a
Basic-Module. The links between aspects and the main
component show a dependency relationship with the weaver
component. Although we must understand that the “join point”
concept is really shaped along the whole architectural model
described here.
The general component <<weaver>> has the commitment of
identify and filter the join points where the code about the

Figure 2. Architectonical aspects modelling.

«aspect»
synchronizationsynchronizationsynchronizationsynchronization

«aspect»
distributiondistributiondistributiondistribution

«aspect»
logginglogginglogginglogging

«aspect»
securitysecuritysecuritysecurity

«principal»

functionalityfunctionalityfunctionalityfunctionality
basicbasicbasicbasic

«weaver»

generalgeneralgeneralgeneral

0..*

0..*

«aspect»
synchronizationsynchronizationsynchronizationsynchronization

«aspect»
distributiondistributiondistributiondistribution

«aspect»
logginglogginglogginglogging

«aspect»
securitysecuritysecuritysecurity

«principal»

functionalityfunctionalityfunctionalityfunctionality
basicbasicbasicbasic

«weaver»

generalgeneralgeneralgeneral

0..*

0..*

 6

different aspects inside the basic functionality main component
will be applied, using the diverse aspect-components mechanisms.
As a result, the aspect component is one support more for the
dynamic and static join points management.
In this architectural modelling we can observe the continuous use
of Ports, all these elements are an important part in the different
join points modelling found at the system.
We must remember that in the AOP can be used different
specialized languages for the aspects implementation. Actually the
Aspects-oriented languages have a close relation with the Objects-
Oriented languages, but this is not enough. Therefore, the AO
modelling must be support by CASE tools in order to carry out
the code in the different languages required for the AO systems
implementation phase; in order to achieve this some facilities
must be added in the tools to make specific languages patterns and
not depend on duly provided languages, for the different Aspects.

5.2 Aspectual classes diagrams
The class diagrams of the main component cannot module the
relation between aspects and Basic-Module, due to the
entanglement of relations that it would become, breaking the
graphical representation harmony of the basic functional
behaviour; although, it is recommended having a component
classes visualization, specification, and documentation, which are
cross and cut by different aspects. Hence, the AO modelling needs
a complementary diagram.

Figure 3 models an aspectual class diagram; the classes are
connected with an association class by their respective Ports, the
crosscutting association class is stereotyped as <<aspect>>, since
the association class is responsible of providing the changes to
each one of the components classes in order to create objects with
the necessary features to develop their basic functionality,
achieving previously the modelling aspects weaving.
In the UML 2.0 aspects modelling approach from this paper we
present how the objects relationship in a basic functionality
system is related ahead of time with aspectual instances for its
later relation with objects just from the main component.

Thanks to the features in the association class, where it has class
properties and hence it has the capability of generating roles, we
can generate aspectual interaction diagrams.

5.3 Aspectual interaction diagrams
The aspectual interaction diagrams (sequence and collaboration)
will be important Aspects design weapon. These diagrams are the
necessary supplement to describe the specific relationships
between Aspects and Basic-Module.
One circumstance that can appear is the possibility about an
Aspect crosscutting other Aspect; in this case the aspectual
interaction diagrams will need to show a relationship with
elements from another aspect-component. However, the aspectual
interaction diagrams between the aspects will be modulated in the
<<weaver>> main component, since this is the responsible to
obtain consistency in these relationships, due to the possible
multi-dimensional aspects [15] that can emerge in an AO system
modelling.

6. CONCLUSIONS
In this paper we introduced a comparison between an aspects
theory proposed in the informal ACM with the UML 2.0 concepts
than can be considered as Aspectual. The foregoing Section
covers just one part of the directives that are necessary to module
properly an AO system with an OO modelling language.
This short work is just one step towards the goal of unifying the
AOSD modelling concept. In this research we see that the Aspects
incorporation in the software development process in the
performing stage, can be handled in a discrete manner; it is
notorious that module this Aspects using previously modelling
languages, as well as with their respective and existing CASE
tools, is more complex and needs more refinement.
Actually few systems with great software quantity are using
Aspects-Oriented modelling; the most of the software developers
incorporate the AOP principles with AO languages, but it is more
important to establish standards to develop Aspects during the
software development life cycle and very specially at the design
and requirements level. Still exist basic elements to be solved. A
collective effort for such task would help to achieve this goal.
In this context, the incoming work is a try of complete
specification about the UML modelling language in order to
provide notation and rules that enable the creation of structural
and Aspectual behaviour models, where these would be treated
explicitly as first class entities. Moreover we have the goal of
develop a conceptual modelling for a possible evolution in the
OO Programming, towards an Aspectual Objects-Oriented
Programming – AOOP.

ClassClassClassClass AAAA

- Attributes A

+ Operations

ClassClassClassClass CCCC

- Attributes C

+ Operations

ClassClassClassClass BBBB

- Attributes B

+ Operations

«aspect»
crosscuttingcrosscuttingcrosscuttingcrosscutting

ClassClassClassClass AAAA

- Attributes A

+ Operations

ClassClassClassClass CCCC

- Attributes C

+ Operations

ClassClassClassClass BBBB

- Attributes B

+ Operations

«aspect»
crosscuttingcrosscuttingcrosscuttingcrosscutting

ClassClassClassClass AAAA

- Attributes A

+ Operations

ClassClassClassClass CCCC

- Attributes C

+ Operations

ClassClassClassClass BBBB

- Attributes B

+ Operations

«aspect»
crosscuttingcrosscuttingcrosscuttingcrosscutting

Figure 3. Aspectual Classes Diagram.

 7

7. REFERENCES
[1] Bertrand Meyer. Object-Oriented software construction,

Prentice Hall PTR,1997
[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,

Ch., Loingtier, J. and Irwin, J. Aspect-Oriented
Programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP ´97)
(Yväskylä, Finland, June 9-13, 1997). Springer-Verlag,
Berlin Heidelberg, 1997, LNCS 1241, Pages 220–242.

[3] The Aspect-Oriented Software Development web site.
http://aosd.net/, July 2004.

[4] Elrad, T., Filman, R. E., and Bader, A. Aspect-Oriented
Programming: Introduction. Communications of the ACM,
Volume 44, Issue 10 (October 2001), Pages 29–32.

[5] Aldawud, O., Elrad, T. and Bader, A. Automatic code
generation using an Aspect Oriented Framework. In
Proceedings of the Workshop on Advanced Separation of
Concerns at 15th European Conference on Object-Oriented
Programming (ECOOP ’01) (Budapest, Hungary, June 18-
22, 2001).

[6] Clarke, S., Harison, W., Ossher, H. and Tarr, P. Separation
Concerns throughout the Development lifecycle. In
Proceedings of the 3rd Workshop on Aspect-Oriented
Programming at 13th European Conference on Object-
Oriented Programming (ECOOP ’99) (Lisbon, Portugal,
June 14-18, 1999) .

[7] Object Management Group. Unified Modelling Language
Specification. Version 1.5 March 2003 (version 1.3 June
1999. Version 1.4 September 2001).

[8] Object Management Group. UML 2.0 Infrastructure, UML
2.0 Superstructure Specification. OMG document ptc/03-09-
15. 2003.

[9] Wegner, P. Dimensions of Object-based Language Design.
In Proceedings 2nd Conference on Object-Oriented
Programming Systems, Languages and Applications

(Orlando, Florida, United States, October 04 - 08, 1987).
ACM Press, New York, NY, 1987, Pages 168-182.

[10] Ossher, H. and Tarr, P. Operation-Level Composition: A
Case in (Join) Point. In Proceedings of the 2nd Workshop on
Aspect-Oriented Programming at 12th European Conference
on Object-Oriented Programming(ECOOP ’98) (Brussels,
Belgium, July 20-24, 1998).

[11] Ostermann, K. and Kniesel, G. Independent Extensibility—
An Open Challenge for AspectJ and Hyper/J. In Proceedings
of the Workshop on Aspects and Dimensional of Concerns at
14th European Conference on Object-Oriented
Programming (ECCOP ’00) (Sophia Antipolis and Cannes,
France, June 12-16, 2000).

[12] Matthijs, F., Joosen, W., Vanhaute, B., Robben, B. and
Verbaeten, P. Aspects should not die. In Proceedings of the
Workshop on Aspect-Oriented Programming at 11th
European Conference on Object-Oriented Programming
(ECCOP ’97) (Jyväskylä, Finland, June 9-13, 1997)

[13] Stein, D., Hanenberg, S. and Unland, R. On Representing
Join Points in the UML. In Proceedings of the 2nd Workshop
on Aspect Modelling with UML at the Fifth International
Conference on the Unified Modelling Language and its
Applications (UML 2002), (Dresden, Germany, 30
September - 4 October, 2002).

[14] Lamping, J. The Role of Base in Aspect-oriented
Programming. In Proceedings of the 3rd Workshop on
Aspect-Oriented Programming at 13th European Conference
on Object-Oriented Programming (ECOOP ’99) (Lisbon,
Portugal, June 14-18, 1999).

[15] Tarr, P., Ossher, H., Harrison, W. and Sutton, S. M. Jr. N
Degrees of Separation: Multi-Dimensional Separation of
Concerns. In Proceedings of the 21st International
Conference on Software Engineering (ICSE ’99) (Los
Angeles, California, USA, May 16-22, 1999). IEEE
Computer Society Press, Los Alamitos, CA, USA, 1999,
pages 107–119.

